RE 11 263/08.02

Replaces: 06.98

Radial piston pump type R4 Fixed displacement

Nominal sizes (NS) 1.60 to $20.00 \mathrm{~cm}^{3}$
Series 1X
Operating pressure up to 700 bar

Features

- Self-priming, valve controlled
- 14 nominal sizes, with capacities that permit optimum component selection
- Hydro-dynamically lubricated plain bearings for long service life
- Multiple pressure connections with various cylinder combinations

Overview of contents

Contents	Page
Ordering details	2
Function, section, symbol	3
Multi-circuit pump versions	4
Technical data, noise pressure level	5
Flow and performance data	6 and 7
Unit dimensions	8 and 9
Seal kits, commissioning guidelines	10

by Bosch Rexroth AG, Industrial Hydraulics, D-97813 Lohr am Main
All rights reserved. No part of this document may be reproduced or stored, processed, duplicated or circulated using electronic systems, in any form or by any means, without the prior written authorisation of Bosch Rexroth AG. In the event of contravention of the above provisions, the contravening party is obliged to pay compensation.
This document was prepared with the greatest of care, and all statements have been examined for correctness. This document is subject to alterations for reason of the continuing further developments of products. No liability can be accepted for any incorrect or incomplete statements.

(3), (5), (10) \wedge radial piston pumps with $3,5,10$ pistons
${ }^{1}$) Not available with shaft end (versions "G" and "K")
${ }^{2}$) Not available with shaft end (version "K")

Hydraulic pumps type R4 are valve controlled, self-priming radial piston pumps with a fixed displacement.
The radial piston pump type R4 basically comprises of the housing (1), eccentric shaft (2) and 3, 5 or 10 pump elements (3) with a suction valve (4), pressure valve (5) and piston (6).

Suction and delivery process

The pistons (6) are arranged radially around the eccentric shaft (2). The hollow piston (6) with suction valve (4) is guided in cylinder (7) and pushed onto the eccentric shaft (s) by the spring (8). The radius
of the piston running surface corresponds to the eccentric radius. The cylinder (7) seals against a hemispherical element (9).
When the piston (6) moves downwards, the working chamber (10) in the cylinder (7) increases in size. The resulting negative pressure lifts the suction valve plate from the sealing edge. At the same time, the suction chamber (12) is connected to the working chamber (10) by means of a radial groove (11) in the eccentric shaft (2).
The working chamber fills with fluid. When the piston (6) moves upwards, the suction valve (4) closes and the pressure valve (5) opens. Fluid now flows via pressure port (P) into the system.

The following may be seen from the diagrams shown below:

- The number and position of the pressure ports,
- Which cylinders are interconnected.

The dots indicate the cylinders which lie directly at a pressure port.

The circles indicate the cylinders which do not lie directly at a pressure port.
The dotted and chain dotted lines indicate which cylinders are interconnected

The sequence of the outlet ports, in the designation of the pressurised ports, is always taken in a clockwise direction.
The pressure port that - in a clockwise direction - lies nearest to the suction port is identified with "P1".

Code	Pressure ports	Cylinder combinations		
		3 pistons	5 pistons	10 pistons
01	1			
02	2			
03	3			
08	5			
11	6			
12	10			

Technical data (for applications outside these parameters, please consult us!)

Noise pressure level (average values): (measured at $n=1450 \mathrm{~min}^{-1}, v=41 \mathrm{~mm}^{2} / \mathrm{s}$ and $\vartheta=50^{\circ} \mathrm{C}$)

The characteristic curves do not apply to multi-circuit pumps.

3 piston pumps

Flow and performance data (average values): per cylinder ($n=1450 \mathrm{~min}^{-1}$)

Cylinder inside Ø in mm	Stroke in mm	$\begin{gathered} V_{\text {geom }} \\ \text { in } \\ \mathrm{cm}^{3} \end{gathered}$		Pressure p in bar													
				50	100	150	200	250	300	350	400	450	500	550	600	650	700
10	6.4	0.509	$q_{v, \text { eff }} \mathrm{L} / \mathrm{min}$	0.71	0.7	0.69	0.69	0.69	0.685	0.68	0.68	0.675	0.67	0.67	0.665	0.66	0.66
			P_{a},eft kW	0.093	0.164	0.231	0.29	0.358	0.42	0.481	0.54	0.605	0.67	0.739	0.81	0.888	0.97
10	9.1	0.714	$q_{\mathrm{v}, \text { eff }} \mathrm{L} / \mathrm{min}$	1.02	1.01	1.0	0.995	0.99	0.985	0.98	0.975	0.97	0.965	0.96	0.955	0.95	0.94
			P_{a}, kW	0.129	0.23	0.328	0.41	0.503	0.58	0.677	0.77	0.856	0.94	1.046	1.16	1.257	1.36
10	11.0	0.864	$q_{\mathrm{V}, \text { eff }} \mathrm{L} / \mathrm{min}$	1.22	1.21	1.205	1.2	1.195	1.19	1.184	1.18	1.174	1.17	1.163	1.157	1.147	1.14
			P_{a} kW	0.15	0.275	0.392	0.49	0.594	0.7	0.804	0.91	1.018	1.13	1.244	1.37	1.486	1.61
15	6.4	1.13	$q_{\mathrm{V}, \text { eff }} \mathrm{L} / \mathrm{min}$	1.6	1.59	1.58	1.567	1.56	1.556	1.546	1.54	1.53	1.523				
			P_{a}, kW	0.213	0.4	0.547	0.7	0.85	1.0	1.14	1.27	1.433	1.566				
15	9.1	1.61	$q_{\mathrm{v}, \text { eff }} \mathrm{L} / \mathrm{min}$	2.28	2.26	2.25	2.24	2.23	2.22	2.20	2.19	2.18	2.17				
			P_{a}, kW	0.27	0.49	0.71	0.91	1.11	1.31	1.51	1.7	1.91	2.12				
15	11.0	1.94	$q_{\mathrm{v}, \text { eff }} \mathrm{L} / \mathrm{min}$	2.74	2.73	2.71	2.7	2.68	2.67	2.65	2.64	2.62	2.6				
			P_{a}, kW	0.32	0.57	0.826	1.06	1.31	1.55	1.8	2.05	2.29	2.53				

Factor " \boldsymbol{f} " for uneven running at $\boldsymbol{n}=1450 \mathbf{m i n}^{-1}$
The values in the table above "flow and performance data" refer to one cylinder. In order to determine the total power required, the values must be multiplied by the number of cylinders in question.
At the same time, an uneven funning factot " f " must be introduced.

10 cylinder pumps always have 2 cylinders connected to a pressure port.

Radial piston pump			
3 cylinders		5 or 10 cylinders	
Cylinder under load	Factor f	Cylinder under load	Factor f
1	3.13	1	3.13
		$1+2$	1.89
$1+2$	1.57	1+3	1.57
		$1+2+3$	1.60
		$1+3+4$	1.35
		$1+2+3+4$	1.30
$1+2+3$	1.00	$1+2+3+4+5$	1.00

Example

Pumps 1PF1R4-1X/1,60-700 RA 01M02

Ports 1 and 2 are connected and loaded to 450 bar, port 3 is unloaded.
$P_{\mathrm{a}} \quad=2 \times 0.605 \mathrm{~kW}=1.21 \mathrm{~kW}$
$f=1.57$
$P_{\text {erf }} \quad=1.21 \mathrm{~kW} \times 1.57=1.90 \mathrm{~kW}$

Port 3 is loaded to 300 bar, ports 1 and 2 are unloaded.
$P_{\mathrm{a}} \quad=0.42 \mathrm{~kW}$
$f=3.13$
$P_{\text {erf }} \quad=0.42 \mathrm{~kW} \times 3.13=1.31 \mathrm{~kW}$

Ports 1, 2 and 3 are loaded to 200 bar.
$P_{\mathrm{a}} \quad=3 \times 0.29 \mathrm{~kW}=0.87 \mathrm{~kW}$
$P_{\text {erf }} \quad=0.87 \mathrm{~kW} \times 1.0=0.87 \mathrm{~kW}$

	$V_{\text {geom }}$	Cylinder	Stroke	No．of										sure p	bar					
	cm^{3}		mm				50	100	150	200	250	300	350	400	450	500	550	600	650	700
		10		3	$q_{v, \text { eff }}$	L／min	2.12	2.1	2.09	2.08	2.07	2.06	2.05	2.04	2.03	2.02	2.01	2.00	1.99	1.98
1．60－700	1.51		6.4		$P_{\text {a }}$	kW	0.29	0.51	0.7	0.89	1.08	1.28	1.46	1.65	1.89	2.1	2.3	2.5	2.7	2.9
2．00－700	2.14		9.1		$q_{V, \text { eff }}$	L／min	3.02	3.0	2.98	2.97	2.95	2.94	2.92	2.91	2.89	2.88	2.86	2.85	2.83	2.81
					$P_{\text {a }}$	kW	0.4	0.7	0.97	1.23	1.51	1.8	2.0	2.3	2.6	2.9	3.2	3.5	3.8	4.1
2．50－700	2.59		11.0		$q_{v, \text { eff }}$	L／min	3.67	3.64	3.62	3.60	3.58	3.56	3.54	3.52	3.50	3.48	3.46	3.44	3.42	3.39
$2.50-700$					Pa_{a}	kW	0.47	0.84	1.17	1.5	1.78	2.1	2.45	2.8	3.1	3.4	3.8	4.1	4.5	4.9
$3.15-700$	3.57	10	9.1	5	$q_{v, \text { eff }}$	L／min	5.07	5.02	5.01	4.97	4.94	4.92	4.89	4.87	4.84	4.82	4.79	4.77	4.74	4.71
					P_{a}	kW	0.65	1.15	1.64	2.1	2.51	3.0	3.44	3.84	4.28	4.7	5.23	5.8	6.28	6.8
$4.00-700$	4.32		11.0		$q_{\text {v，eff }}$	L／min	6.13	6.07	6.03	6.0	5.97	5.95	5.91	5.88	5.85	5.82	5.79	5.76	5.73	5.7
					P_{a}	kW	0.77	1.4	1.96	2.5	3.01	3.5	4.07	4.6	5.12	5.6	6.26	6.9	7.52	8.1
$6.30-700$	7.14	10	9.1	10	$q_{V, \text { eff }}$	L／min	10.15	10.05	10.0	9.95	9.89	9.85	9.8	9.75	9.7	9.65	9.58	9.55	9.47	9.4
					Pa_{a}	kW	1.29	2.3	3.28	4.1	5.03	5.8	6.77	7.7	8.56	9.4	10.46	11.6	12.57	13.6
$8.00-700$	8.63		11.0		$q_{\text {v，eff }}$	L／min	12.2	12.1	12.05	12.0	11.95	11.9	11.84	11.8	11.74	11.7	11.63	11.57	11.47	11.4
					Pa_{a}	kW	1.5	2.75	3.92	4.9	5.94	7.0	8.04	9.1	10.18	11.3	12.44	13.7	14.86	16.1
$3.15-500$	3.39	15	6.4	3	$q_{v, \text { eff }}$	L／min	4.8	4.77	4.73	4.7	4.68	4.67	4.64	4.62	4.59	4.57				
					P_{a}	kW	0.64	1.2	1.64	2.1	2.55	3.0	3.42	3.8	4.3	4.7				
$5.00-500$	4.82		9.1		$q_{\text {v，eff }}$	L／min	6.85	6.79	6.75	6.72	6.68	6.65	6.61	6.58	6.53	6.5				
					P_{a}	kW	0.88	1.6	2.24	2.85	3.49	4.1	4.75	5.4	6.04	6.7				
$6.30-500$	5.83		11.0		$q_{\text {v，eff }}$	L／min	8.26	8.18	8.13	8.09	8.04	8.01	7.97	7.93	7.88	7.85				
					P_{a}	kW	1.03	1.83	2.61	3.3	4.11	4.9	5.62	6.3	7.14	7.9				
$8.00-500$	8.03	15	9.1	5	$q_{\text {v，eff }}$	L／min	11.4	11.32	11.25	11.2	11.14	11.08	11.02	10.97	10.9	10.85				
			9.1		Pa_{a}	kW	1.4	2.5	3.62	4.6	5.69	6.7	7.74	8.8	9.84	10.9				
	9.71		11.0		$q_{\text {V，eff }}$	L／min	13.7	13.63	13.56	13.5	13.42	13.36	13.28	13.2	13.09	13.0				
10．00－500					Pa_{a}	kW	1.7	2.97	4.27	5.5	6.72	7.9	9.15	10.3	11.64	12.9				
16．00－500	16.07	15		10	$q_{V, \text { eff }}$	L／min	22.8	22.64	22.5	22.4	22.27	22.16	22.02	21.9	21.78	21.7				
			9.1		Pa_{a}	kW	2.7	4.9	7.07	9.1	11.12	13.1	15.6	17.0	19.06	21.2				
	19.43		11.0		$q_{V, \text { eff }}$	L／min	27.4	27.3	27.1	27.0	26.84	26.7	26.54	26.4	26.2	26.0				
20．00－500						kW	3.2	5.7	8.26	10.6	13.08	15.5	18.02	20.5	22.92	25.3				

Pipe thread to ISO 228/1

Pipe thread to ISO 228/1

1 Cylinderical shaft
2 Splined shaft,
spline 21×24 to DIN 5481

1 Cylinderical shaft
2 Splined shaft,
spline 21×24 to DIN 5481

For pump mounting brackets and double flange feet
see catalogue sheet RE 32110.

Material No. for NBR seals	Material No. for FKM seals	Valid for
00307726	00307729	3 piston pumps
00307727	00307730	5 piston pumps
00307728	00307594	10 piston pumps

Commissioning guidelines

Bleeding

- All of the type R4 radial piston pumps are self-priming.
- Before commissioning the pump must be bled to protect it from damage.
- Should the pump not deliver without foam after approx. 20 seconds the system must be rechecked. After reaching the operating values, check the pipework for leaks. Check the operating temperatures.

Commissioning

- Check to see whether the system has been correctly and cleanly assembled.
- Take the direction of rotation arrows of the motor and pump into account.
- Run the pump without load and allow it to run for a few seconds without pressure so that sufficient lubrication is provided.
- Under no circumstances allow the pump to run without pressure fluid!

© Important notes

- Service and maintenance of the pump may only be carried out by authorised, trained and instructed personnel!
- Only use original Bosch Rexroth spare parts!
- The pump may only be used within the permissible data.
- The pump must only be operated when in good condition!
- When work is carried out at the pump (e.g. installation and disassembly) the system must be switched off and depressurised!
- Unauthorised alterations and changes which influence the safety and function are not permitted!
- Fit protective equipment (e.g. coupling guard)!
- Existing protective equipment must not be removed!
- The general valid safety and accident prevention regulations must be observed under all circumstances!

